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ABSTRACT

We show that a recently developed universal demosaicker by the
present authors greatly outperforms existing demosaickers when
tested with a realistic optical pipeline. We present speed and quality
optimizations of this demosaicker for the case of regular pattern
color filter arrays.

We implement and extensively test optimized versions for sev-
eral common CFAs including Bayer, CMY and several RGBW pat-
terns. These tests show that the proposed algorithms outperform
other demosaickers by a substantial margin while being faster than
most of them. High sensitivity RGBW CFAs are shown to have bet-
ter performance than Bayer demosaicked with previous algorithms.

The proposed universal demosaicker is a set of Finite Impulse
Response Filters, which allows a single, efficient, Image Signal
Processor design to support different CFAs by changing its filter
weights. Being linear, the demosaicker is free of noise induced arti-
facts and outputs images with near Poissonian noise which is noise
reduction friendly.

Index Terms— Universal, Demosaicking, Bayer, RGBW

1. INTRODUCTION

A universal demosaicker was first introduced in [1] wherein a con-
stant color ratio model in conjunction with a numerical stabilization
technique was used to interpolate missing pixel values in primary
color CFAs. Subsequently [2] introduced a variation minimization
based demosaicker that was not restricted to primary color CFAs and
out-performed [1] on certain random CFAs. Neither of these univer-
sal demosaickers, however, could match the performance of leading
Bayer-specific algorithms on the Bayer CFA such as [3], [4], [5] and
[6].

More recently [7] introduced an universal demosaicker for lim-
ited luminance and chrominance bandwidth models that reduced
the demosaicking problem to solving a system of linear equations.
When applied to random RGB CFAs with luminance and chromi-
nance bandwidths typically found in commercial systems, this
algorithm out-performed existing Bayer systems.

In this paper, we present an optimization of [7] for the case of
simple repeating pattern CFAs. Such patterns are comprised of a
small number of carriers. A frequency domain formulation of the de-
mosaicking problem is shown to be sparse and decomposable lead-
ing to better run time performance.
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2. FORMULATION OF THE DEMOSAICKING PROBLEM

Consider a discrete image with(N1, N2) pixels. Denote the R, G,
B color planes of the image byxi, i ∈ {r, g, b} and those of the
CFA that filters it byci, i ∈ {r, g, b}. Now, a photosite located at
n = (n1, n2), 1 ≤ n1 ≤ N1, 1 ≤ n2 ≤ N2 filters the incident
light x(n) =

[

xr(n) xg(n) xb(n)
]T

through color filter array
c(n) =

[

cr(n) cg(n) cb(n)
]

and measures the resulting noise-
free, scalar signaly(n), where

y(n) = c(n) · x(n) (1)

Following the frequency domain formulation of [7], taking(N1, N2)
point 2D DFT of both sides we have,

Y =
∑

i∈{r,g,b}

Ci ∗Xi (2)

whereY , Ci, Xi, i ∈ {r, g, b} are the 2D DFT ofy, ci, xi, i ∈
{r, g, b} respectively and∗ represents 2D convolution. The non-zero
elements ofCi correspond to modulation carriers. In order to cast
Equation 2 in matrix form, we first definẽY , X̃i, C̃i, i ∈ {r, g, b}
as the row-major column vector versions ofY ,Xi,Ci, i ∈ {r, g, b}

respectively andX̃ ≡
[

X̃r X̃g X̃b

]T
as the concatenation of

X̃r, X̃g, X̃b. Furthermore, denote DFT frequencies of the input
image byω = (ω1, ω2) and those of the CFA filtered image by
Ω = (Ω1,Ω2) and their row-major column vector versions asω̃ and
Ω̃ respectively. Now Equation 2 can be re-written in matrix form as

Ỹ = A · X̃ (3)

where rowΩ̃ of A is the concatenation of̃Di(Ω̃), i ∈ {r, g, b},

A(Ω̃) ≡
[

D̃r(Ω̃) D̃g(Ω̃) D̃b(Ω̃)
]

(4)

andD̃i(Ω̃), i ∈ {r, g, b} is a row vector obtained by appropriately

rearranging the elements of̃C
T

i , i ∈ {r, g, b} so as to effect the
convolution of Equation 2.

This system of linear equations can be solved to determineX̃

if the rank ofA is no less than|X̃|, where|.| denotes cardinality.
Since the rank of matrixA cannot exceed|Ỹ | which itself is one
third of the cardinality ofX̃ for the case of three basic colors, ad-
ditional constraints are required to meet the above condition. We
choose the constraints that the signal is bandlimited, and has low
chrominance bandwidth so that two thirds or more elements ofX̃

may be taken to be zero. We obtaiñX
′

from X̃ by moving to a lu-
minance/chrominance color space and dropping elements ofX̃ cor-
responding to the above constraints.A

′ is obtained by making the
corresponding changes toA. This gives

Ỹ = A
′ · X̃

′
(5)



which leads to the solution

X̃
′
= A

′−1 · Ỹ (6)

whereA′−1 is a generalized inverse ofA′.
It should be noted that any transform with good energy com-

paction properties can be substituted for the DFT in the above anal-
ysis, as long as care is taken with the Convolution Theorem.

3. OPTIMIZATIONS FOR CFAS WITH FEW CARRIERS

For CFAs composed of a small number of carriers, each DFT coeffi-
cient of the CFA filtered image is connected to only a small number
of other DFT coefficients by the equations 5. The transformation
matrix,S, becomes sparse and decomposable and DFT coefficients
of the input image can therefore be computed using generalized in-
verses of small matrices. Additionally, sets of sub-domains of the
input image frequency space may be identified such each set requires
the computation of the generalized inverse of identical matrices.

We consider the problem of constructing the sets mentioned
above, illustrating the construction with the Bayer CFA as an ex-
ample. The Bayer CFA has just three carriers as shown in Figure
1(a). The relevant color components are the luminance L and
chrominances C1 and C2 as defined in [4]. For the present exam-
ple, luminance resolution is set to 0.83 of the Nyquist limit and
chrominance resolution is set to half of luminance resolution.

The bandlimitedness conditions on the color components of the
input image define their domains∆i, typically discs in frequency
space.

∆i = {ω : ∃ X̃
′

i(ω̃)} (7)

wherei ∈ {l, c1, c2, . . .}
After modulation by the CFA, these domains get shifted by the

carrier frequenciesωcof the CFA.

∆ωc

i = {ω : ω = ωc + ω
′
, ω

′ ∈ ∆i} (8)

whereωc corresponds to non-zero elements ofCi.
These shifted domains may overlap, creating boundaries. See

Figure 1(a) as an example. The domain boundaries enclose regions
in the frequency space of the CFA filtered image.

The following geometrical steps are used to construct the sets:

• For each color component, shift all domain copies back to the
baseband, along with domain overlap boundaries lying therein.
The union of all domain boundaries of all domain copies may sub-
divide the domains into smaller sub-domains.

• Repeat the above steps of shifting domain copies, including their
divisions, to all carrier frequencies and then shift them back to the
baseband till this process results in no new sub-domain formation.
In the Bayer example, Figure 1(c) and 1(d) illustrate numbered
sub-domains formed in the C2 and L color component domains
respectively. The C1 domain forms a single sub-domain by itself.
Let these sub-domains be denoted by∆i,p wherep is the sub-
domain number. Let the shifted sub-domains be denoted by∆ωc

i,p

whereωc is the shift frequency.

• Repeat the above step of shifting copies of domains, including
their divisions, to all the carrier frequencies one last time. In the
Bayer example, this results in the map shown in Figure 1(b). For
each bounded regions in this map , we define the set of all over-
lapping modulated sub-domains in that region:

Os = {∆ωc

i,p : ∆ωc

i,p ∈ s} (9)

• Group the resulting sub-domains into sets so that each setT q con-
tains all domains that either overlap with each or are connected by
a chain of overlaps:

T q ={∆i,p : ∀ ∆ia,pa,∆ib,pb ∈ T q, ∃ ωca, ωcb,Osj ,

∆il,pl, ωcl, ω̄cl, j = 1 . . . k, l = 1 . . . k − 1 k ≥ 0 s.t.

∆ωca

ia,pa ∈ Os1, ∆
ωcl

il,pl ∈ Osl,

∆
ωcl

il,pl ∈ Os(l+1), ∆
ωcb

ib,pb ∈ Osk} (10)

• Group sets into families of setsT r such that all sets in a family
result from overlap of the same domain copies.

T r ={T q : ∀ T q1,T q2 ∈ T r , ∃ a bijection fq1,q2

T q1 ↔ T q2 s.t. ∀ Os1 s.t. ∃ ∆i,p ∈ Os1, ∃ Os2

s.t. ∀ ∆i,q ∈ Os1, fq1,q2(∆i,q) ∈ Os2} (11)

The following families of sets definitions result from the above
construction procedure.

T 1 ={{C1}}

T 2 ={{13L}}

T 3 ={{9L, 5C2}, {10L, 6C2}}

T 4 ={{12L, 7C2}, {11L, 8C2}}

T 5 ={{6L, 2C2, 2L}, {5L, 1C2, 1C2}, {8L, 4C2, 4L},

{7L, 3C2, 3L}}

The following properties hold for the sets and their families so de-
fined:

• All sub-domains in a set are identically shaped. We shall refer to
the common shape of all sub-domains belonging to a set as the set
template.

• Equations involving any frequency variable from one sub-domain
may only involve the corresponding frequency variable from other
sub-domains in the same set.

• Similar reduced sets of equations of the form

Ỹ r = Ar · X̃r (12)

exist for each frequency in the template of each set in a family with
each set of equations containing the same transformation matrix
Ar. Equation 12 is obtained from Equation 5 by selecting only
certain columns and rows ofA′. First, to select columns, a single
frequencyω is arbitrarily selected from the template; theñXr is
constructed fromX̃

′
by keeping only the elements corresponding

to this frequencyω from each sub-domain which is a member
of the set, and discarding the rest.Ar is constructed fromA′

by keeping only the columns corresponding to the elements of
X̃r. Next, to select rows, we first identify all elementsOs which
contain sub-domains from the set in consideration. For each of
these elementsOs, we keep only the row fromA′ corresponding
to the frequencyω, in Ar. We also keep only these rows from̃Y
in Ỹ r.

From the above we conclude that for each family of sets, equa-
tions for only a single discrete frequency in a single template need
be solved. The pseudo inverse of the transformAr may be applied
to compute all discrete frequencies of the templates of all sets in the
family of sets.

The optimized solution has a significant speed advantage both in
computing the generalized inverse and in applying it to a particular



image. The above optimized solution has the following additional
advantages: this solution gives convenient controls over the solution
in the presence of over-determinedness and under-determinedness.
In the Bayer example, sub-domains 1,2,3 and 4 in Chrominance C2
may be under-determined and the optimized solution gives easy con-
trols on the treatment of the solution to these sub-domains. For ex-
ample, we could decide to set these sub-domains to zero.

4. DEMOSAICKING BAYER CFA IMAGES

For the Bayer CFA, the solution resulting from the sets constructed
in the previous section may be further reduced to the following.

• Chrominance C1 does not overlap with the other color compo-
nents if luminance resolution is less than 0.94 times the Nyquist
limit and chrominance resolution is half or less of luminance res-
olution. Therefore C1 may be extracted by demodulation and fil-
tration.

• Chrominance C2 overlaps with luminance if luminance resolution
is more than2

3
times the Nyquist limit and chrominance resolution

is half or more of luminance. C2 has to be pieced together with
sections of its two copies, C2a and C2b, that do not overlap with
luminance. This may result in some domains of C2 being recov-
erable from both C2a and from C2b, such as the central domain in
depicted in the right column of Figure 2, allowing us to compute
its MLE. There may be some domains of C2 that are unrecov-
erable, such as domains 1,2,3 and 4 in Figure 1(c). Such sub-
domains exist if luminance resolution is more than 0.776 times
the Nyquist limit and chrominance resolution is half or more of
luminance.

• Once C2, or recoverable sub-domains of it, has been recovered,
luminance may be extracted by re-modulating C1 and C2 as per
the Bayer CFA and subtracting it from the mosaicked image.

• Having reconstructed, C1, C2 and L, a color transform followed
by an inverse Fourier transform yields the output RGB image.

The above solution has similarities with [4], except for lumi-
nance and chrominance resolutions that are broadly in line with those
used by commercial systems and fine tuned to their optics.

A DSLR imaging pipeline was simulated consisting of a lens
model, a birefringent OLPF, box filtration due to 100% photosite
fill factor, CFA filtration and demosaicking. A F# range of F4-F8
was chosen so as to trade-off spherical aberration and diffraction for
the highest resolution image. At F8 diffraction dominated spher-
ical aberration, allowing us simplify the lens model by discarding
the latter. Greater than Nyquist resolution was used in order to cap-
ture aliasing due to high frequency leakage. A similar exercise was
carried out for compact cameras, except the OLPF was omitted. Re-
constructed images were compared, in terms of CPSNR, with the
input image put through the same imaging pipeline except for the
mosaicing-demosaicking step.

Parameter Compact DSLR

Lens airy disc diameter 4 pixels 2.2 pixels
Birefringent OLPF shift none 1 pixel
Box filtering fill factor 100% 100%
Undersampling factor 1x 1.5x

Table 1. Imaging pipeline simulation parameters.
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Fig. 1. Bayer sub-domains

Fig. 2. Spectrum of Bayer filtered
image (left column) and recov-
erable chrominance sub-domains
(right column) for several values
of luminance resolution: from top
to bottom: 0.67, 0.76, 0.83, 0.94
times the Nyquist limit and half
chrominance resolution

The proposed demosaicking algorithm, both in the general form
(Prop) and in the optimized form (Prop Opt) were compared to two
state of the art non-linear demosaickers for the Bayer CFA: LMMSE
[6], AHD [5] and POCS [3]. The proposed demosaicking algorithm
was tuned to reconstruct luminance at a resolution of 87.7% of the
Nyquist limit and chrominance at 51.4% of the luminance resolu-
tion, which is competitive with commercial systems. All other de-
mosaicker outputs were post filtered to the same resolutions which
marginally improved their CPSNRs. Images from both the Kodak
set and the newer IMAX set were used. Results are shown in Table
2.

Image set Prop Prop Opt LMMSE AHD POCS

IMAX 46.5 45.2 41.0 39.5 39.6
Kodak 51.7 50.0 47.8 46.1 46.9

Image set Prop Prop Opt. LMMSE AHD POCS

IMAX 43.0 41.6 38.5 37.1 37.1
Kodak 48.2 46.2 44.7 43.1 43.4

Table 2. CPSNR (dB) of demosaicking algorithms on the Bayer
CFA for the Compact (top) and DSLR (bottom) cameras.

The proposed demosaicker was also tested on the higher sensi-
tivity Bayer CMY CFA, requiring only a change in the color trans-
form used in its final step to handle the CMY variant. Results are
shown in Table 4.



Prop Opt LMMSE AHD Bilinear

0.34 24.8 34.3 0.13

Table 3. Run time, in seconds, of MATLAB demosaicker imple-
mentations on 512x512 pixel image. Optimized C and DSP imple-
mentations are expected to perform very differently.

Image set Compact DSLR

IMAX 45.6 41.9
Kodak 50.4 45.5

Table 4. CPSNR (dB) of the proposed demosaicking algorithm on
the Bayer CMY CFA for the Compact and DSLR cameras.

5. DEMOSAICKING RGBW CFA IMAGES

Color Filter Arrays (CFA) containing white or panchromatic pixels
in addition to RGB have been suggested by Kodak [8], Sony [9]
and others [10] as a means of improving luminance sensitivity. All
RGBW CFAs suggested so far are regular repeating patterns.

Most existing demosaickers, such as [8], consist of two basic
steps: first independently reconstruct a high resolution panchromatic
image followed by low resolution chrominance images, then merge
these images and output the result.

An empirical comparison of three RGBW patterns, shown in
Figure 3 was made using the proposed universal demosaicker, tuned
to extract 80% luminance and 50% chrominance resolutions, and
the universal demosaicker of Condat [2], whose outputs were post-
filtered to the same resolutions marginally improving its CPSNR.
Results are shown in Table 5.

Images Kodak Sony Wang et al.

Prop Condat Prop Condat Prop Condat
IMAX 43.7 38.4 44.7 38.8 46.0 40.2
Kodak 49.1 41.9 48.8 42.4 51.5 43.0

Images Kodak Sony Wang et al.

Prop Condat Prop Condat Prop Condat
IMAX 40.4 36.0 41.3 36.3 42.5 37.6
Kodak 45.2 39.7 45.2 40.1 47.4 40.7

Table 5. CPSNR (dB) of the proposed universal demosaicker and
of Condat’s universal demosaicker [2] on Kodak, Sony and Wang
RGBW CFAs for the Compact (top) and DSLR (bottom) cameras.

6. CONCLUSION

We optimize a recently developed universal demosaicker for the case
of simple repeating pattern CFAs and test it on a number of com-
mon CFAs. The proposed demosaicker greatly outperforms exist-
ing demosaickers in reconstruction quality while being faster than
most. Demosaicking performance of high sensitivity RGBW CFAs
is shown to be superior to Bayer with previous demosaickers even in
the absence of noise.

The proposed universal demosaicker performs very well in prac-
tical settings, producing few artifacts and high CPSNR. Its linearity
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Fig. 3. RGBW CFAs by Kodak, Sony and Wang et al. (left to right)
and their spectra.

translates into freedom from directional artifacts, even with high sen-
sor noise, and separable noise reduction. Furthermore, its simplic-
ity and universality enables a single Image Signal Processor (ISP)
design that can be programmed to demosaick most CFA patterns,
thereby overcoming a significant financial impediment to the adop-
tion of novel CFA designs.
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